Improved Efficiency in the Investment Casting Process Utilizing Lean Manufacturing Principles

By

Julie Markee Key Process Innovations Ivan Castillo FS Precision Tech

FS Precision Tech

- FS Precision manufactures precision investment castings for automotive, aerospace, and commercial applications
- Located in Los Angeles, CA
- World leader in titanium turbocharger castings
- Committed to process improvement

Continuous Improvement Journey

Common Vs. Special Cause

Common Cause

- Inherent to the Process
- Random
- Distributed about the average

Special Cause

- Often called assignable
- Must be addressed in order for process to be considered stable

Situation Analysis

> 1st Pass Yield for all parts

• Proxy part was 68% in early 2015

Shell Room Situation

Sources of special cause variation, including:

- Intracoat dry time
- Slurry mixing
- Hand dip technique

- Robot dip technique
- Slurry health
- Slurry rheology
- Process drifted over time
- > No robust training system
- Part quality was causing increased rework and elevated scrap

Data Collection

Time Observations

- Conducted in all departments
- For all major steps in the process

> Results were reviewed:

- Time reflected in ERP System
- Actual
- Least Waste Way

Time Observation

Taken From ERP system		Data from Time Observations Removed		
	Standard	Actuals	Observation LWW /SW	
	Standard CT	Actual CT	Observation LWW/SW CT	
Operation	(Min/Part)	(Min/Part)	(Min/Part)	
WaxInj	4.615	3.945	3.052	
WaxAssm	2.400	8.768	2.587	
ShellOpr	0.831	5.277	1.723	
Foundry	0.715	1.136	1.871	
FCIng	1.762	2.529	1.668	
Hotl	0.600	0.591	0.255	
RawF	1.800	5.620	3.10	
S-Weldng	1.200	0.822	1.90	
FinFis	7.200	8.172	3.96	
Final Inspection	0.000	0.000	0.56	
TOTALS	21.123	36.859	20.676	

Current State Capability Analysis

Mold Drying

> Variations in:

- Shell room environment
- Intracoat dry time
- Impact to Casting Quality Unknown
- ➤ Used KPI-Dry[™] to measure mold dryness

Mold Drying Set-Up

Mold Drying Results

Learnings:

- Variations in dry times could have detrimental impact on casting quality
- > Mold RH is a critical process input

Operator Variability

- > Variability Between:
 - Operators
 - Procedure and Operators
 - Procedure and Best Practices
 - Best practices and Operators
- Source of special cause variation

Addressing Operator Variability

- KPI was teamed up with knowledgeable employee
- Combined aspects of procedure, current process and industry best practices
- Captured on Video
- Procedures matched videos
- Videos, procedures and standard work are reviewed by FSPT technical team

						NUMBER	P10-030
		TITLE	PROCED			REVISION	5/13/15
TITLE		TILL	MEASURING SLUPPY VISCO	TITLE	PROCEDURE	BY	
	MEASURING SLU		MERSORING SLORAT VISCO		MEASURING SLURRY VISCOSITY (ZAHN CUP)	DATE 5/13/15	Page 5 of 5

1. Purpose

The purpose of this pro slurries.

2. Scope

This procedure is estab measuring the slurry vi

3. Safety/PPE Safety glasses are requi

4. Procedure

- 4.1. Inspect Zahn Cup [See
 4.2. Submerge cup into the
 4.3. Do not immerse cup th beginning test. If neces to the surface, prior to
 4.4. Dip cup upstream of th same location every tin is completely submerg
 4.5. Simultaneously start th
 4.6. Watch the stream unde cup. [See Figure 4]
 4.7. If at any time the slurr
 4.8. Repeat 4.4-4.7, record recorded, add the three
- recorded, add the three the average of the 3 re: AVERAGE. Then calc largest of the 3 reading reading.
- 4.9. Make adjustments to the Red zone.
- 4.10. Follow Instructions or

Figure 2: Loca

Figure 3: Properly submerged cup vs Improperly submerged cup

Figure 4 - Breaking Point of the stream

Video

Slurry Viscosity Procedure Reference P10-030

Slurry Integrity

- Slurry testing was labor intensive, however...
- Tests were not sufficient to detect issues prior to impacting casting quality
- Confusion over roles and responsibilities if slurry was out of range

Slurry Testing Matrix

	TEST METHOD	RESPONSIBLE DEPARTMENT	PRIME	PRIME Pre-Wet	INT	INT Pre-Wet	BACK- UP	BACK-UP Pre-Wet
VISCOSITY	P10-030	SHELL	Х		Х		Х	
PLATE WEIGHT	S09-104	SHELL	X					
TEMPERATURE	S09-104	SHELL	Х					
pH	P10-010	LAB						Х
SPECIFIC GRAVITY/%SiO2	P10-009	LAB	Х	Х	Х			Х
BUBBLE TEST	P10-033	LAB			Х			
SUPERNATE (BEFORE)		LAB			Х			
SUPERNATE (AFTER)		LAB			Х			
% POLYMER	P10-006	LAB						Х
BACTERIA DIP SLIDES	P10-031	LAB			Х	Х	Х	Х
LABFORM			39B	39C	37A	37B	31A	

3x/Shift	1/shift	Daily	2x/Week

Slurry Testing Swim Lanes

Outcomes

Standardized Process

➤Trained Operators

Lessons Learned

Take the time to collect data
 Understand plant culture
 Gather tribal knowledge

Conclusion

Lean Manufacturing principles can be used in the investment casting process

Investing in a training program is key to sustaining the improvements

Thank You!

